Robust adaptive lasso based on robust correlation estimates
covlasso.Rd
Robust adaptive lasso based on robust correlation estimates
Usage
covlasso(
x,
y,
cor.method = "gaussrank",
scale.method = "qn",
center.method = "median",
adaptive = TRUE
)
Arguments
- x
input design matrix
- y
input response vector
- cor.method
could be "pearson" or "gaussrank"
- scale.method
"sd" or "qn"
- adaptive
adaptive regularization penalties
- std
If TRUE the robust correlation matrix is used, if FALSE the robust covariance matrix is used.
- cormatrix
you could also use a correlation matrix as input
- scale
put in scales if you use cormatrix
Value
betahat_opt, the optimal estimation of beta obtained from this algorithm
lambda_opt is the optimal tuning parameter and sigma_opt is the optimal estimation of sigma.
The output also includes the estimated correlation matrix, the estimated covariance matrix and et cetera from the covf function.
Examples
dat = genevar()
y = dat$y
x = dat$x
fit = covlasso(x,y)
fit$betahat_opt
#> const.3 beta1 beta2 beta3 beta4 beta5 beta6
#> -0.6848624 0.0000000 2.4248406 0.5241094 2.2935756 0.0000000 0.0000000
#> beta7 beta8 beta9 beta10 beta11 beta12 beta13
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> beta14 beta15 beta16 beta17 beta18 beta19 beta20
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000