Skip to contents

Cellwise regularized robust sparse regression (with a specific lambda)

Usage

sregcell_lambda(
  y,
  x,
  softbeta = TRUE,
  softdelta = TRUE,
  softzeta = TRUE,
  lambda_delta = 2.56,
  lambda_zeta = 2.56,
  lambda = 0,
  alpha = 0.5,
  tol = 0.001,
  maxiter = 100
)

Arguments

y

n-dimensional response vector

x

nxp design matrix

softbeta

whether to use soft/hard threshold for beta

softdelta

whether to use soft/hard threshold for delta (outliers in x)

softzeta

whether to use soft/hard threshold for zeta (outliers in y)

lambda_delta

tuning parameter of delta

lambda_zeta

tuning parameter of zeta

lambda

tuning parameter of beta

alpha

the importance factor of the regression loss (between 0-1, by default is 0.5)

tol

the tolerance of convergence, by default is 1e-3

maxiter

number of iterations, by default is 100

Value

intercept: the estimated intercept

betahat: the estimated vector of regression coefficients

deltahat: the estimated outlying parts in the design matrix

zetahat: the estimated outlying parts in the response

...

Examples



data = genevar()
y = data$y
x = data$x
fit = sregcell_lambda(y,x, lambda = 1)