Cellwise regularized robust sparse regression (with a specific lambda)
sregcell_lambda.Rd
Cellwise regularized robust sparse regression (with a specific lambda)
Usage
sregcell_lambda(
y,
x,
softbeta = TRUE,
softdelta = TRUE,
softzeta = TRUE,
lambda_delta = 2.56,
lambda_zeta = 2.56,
lambda = 0,
alpha = 0.5,
tol = 0.001,
maxiter = 100
)
Arguments
- y
n-dimensional response vector
- x
nxp design matrix
- softbeta
whether to use soft/hard threshold for beta
- softdelta
whether to use soft/hard threshold for delta (outliers in x)
- softzeta
whether to use soft/hard threshold for zeta (outliers in y)
- lambda_delta
tuning parameter of delta
- lambda_zeta
tuning parameter of zeta
- lambda
tuning parameter of beta
- alpha
the importance factor of the regression loss (between 0-1, by default is 0.5)
- tol
the tolerance of convergence, by default is 1e-3
- maxiter
number of iterations, by default is 100
Value
intercept: the estimated intercept
betahat: the estimated vector of regression coefficients
deltahat: the estimated outlying parts in the design matrix
zetahat: the estimated outlying parts in the response
...
Examples
data = genevar()
y = data$y
x = data$x
fit = sregcell_lambda(y,x, lambda = 1)